
Tetrahedron Letters 49 (2008) 7121–7123
Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier .com/ locate/ tet le t
A concise three-component synthesis of a-amino esters
derived from phenylglycine and phenylalanine

Caroline Haurena, Stéphane Sengmany, Paul Huguen, Erwan Le Gall *, Thierry Martens, Michel Troupel
Électrochimie et Synthèse Organique, Institut de Chimie et des Matériaux Paris Est, ICMPE, UMR 7182 CNRS—Université Paris 12 Val-de-Marne, 2-8 rue Henri Dunant,
94320 Thiais, France

a r t i c l e i n f o a b s t r a c t
Article history:
Received 29 July 2008
Accepted 24 September 2008
Available online 27 September 2008
0040-4039/$ - see front matter � 2008 Elsevier Ltd. A
doi:10.1016/j.tetlet.2008.09.137

* Corresponding author. Tel.: +33 (0) 149781135; f
E-mail address: legall@glvt-cnrs.fr (E. Le Gall).
a-Amino esters have been synthesized using a straightforward three-component reaction among pre-
formed or in situ-generated aromatic or benzylic organozinc reagents, primary or secondary amines
and ethyl glyoxylate. The procedure, which is characterized by its simplicity, allows the concise synthesis
of phenylglycine and phenylalanine derivatives.
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a-Amino acids constitute one of the most important families of
natural products and play central roles both as building blocks of
proteins and as intermediates in metabolism. They are continu-
ously employed in the elaboration of peptides and as chiral pool
in ligand design and multistep synthesis.1 Amino acids also consti-
tute attractive building blocks in combinatorial chemistry or drug
discovery and in the past years there has been an increasing
interest in various approaches that access novel non-proteinogenic
a-amino acid derivatives.2

Although numerous methods allow the efficient preparation of
a-amino acid derivatives, only a limited set of examples employing
multicomponent procedures have been disclosed to date. For in-
stance, the Petasis three-component reaction3 among boronic
acids, amines and glyoxylic acid has been efficiently employed
for the diastereoselective synthesis of pyrrolidine-derived arylgly-
cines4 or the one-pot sequential Petasis-type a-amino ester forma-
tion and palladium-catalyzed cyclization process.5 However,
despite the fact that this method affords a very convenient access
to a variety of a-amino acid derivatives, the procedure is featured
by rather important reaction times and the impossibility to operate
with some electron-deficient arylboronic acids. Furthermore, to
the best of our knowledge, there is no mention of the use of func-
tionalized benzylzinc reagents in one-step multicomponent proce-
dures leading to a-amino esters derived from phenylalanine.6

Our group has recently developed a multicomponent procedure
allowing the efficient formation of a range of a-substituted amines
such as diarylmethylamines, 1,2-diarylethylamines or benzylam-
ines starting from preformed or in situ-generated organozinc re-
agents, amines and aldehydes.7 Herein, we report preliminary
results regarding the use of ethyl glyoxylate as the aldehyde deriv-
ll rights reserved.
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ative in the procedure to provide an instant access to a variety of
a-amino esters.

As a starting point of the study, we imagined to apply the exper-
imental conditions employed in our previous works regarding the
multicomponent coupling of arylzinc reagents, aromatic aldehydes
and secondary amines to the synthesis of a-amino esters. In this
purpose, it was simply envisaged to replace aromatic aldehydes
by a non acidic glyoxylic acid equivalent under the form of ethyl
glyoxylate.8 The fate of the expected three-component coupling
is depicted in Scheme 1.

Thus, arylzinc reagents (>2 equiv) were preformed in acetoni-
trile from aryl bromides using zinc dust and cobalt catalysis,9

and allowed to react with secondary amines (1 equiv) and ethyl
glyoxylate (1.3 equiv) at room temperature. Results were generally
unsatisfactory with only moderate conversion of the substrates
into the expected a-amino esters after a 4 h period. However, a real
improvement was obtained by simply heating the solution at 50 �C
for several hours.10 In a second step, we envisaged to extend the
procedure to functionalized benzylzinc reagents and noticed from
preliminary experiments that under standard conditions, these re-
agents were clearly more reactive than arylzinc compounds. Fur-
thermore, having shown in a previous work that benzyl bromide
can be easily activated in situ using zinc dust in the presence of
aldehydes and amines to afford coupling products in excellent
yields,7d we chose to simplify the process by operating under these
Barbier-like conditions. Thus, functionalized benzyl bromides
(2.2 equiv) were allowed to react with amines (1 equiv) and ethyl
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glyoxylate (1.3 equiv) in the presence of zinc dust at room temper-
ature.11 Results with respect to the use of both aromatic and benz-
ylic bromides in the three-component coupling are presented in
Table 1.
Table 1
Three-component coupling between organic bromides, amines and ethyl glyoxylate
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a For a functionalized bromobenzene as the halide, the organozinc compound is preform
carried out at 50 �C. For a functionalized benzyl bromide as the halide, the substrate
temperature.
Results range from satisfactory for aryl bromides (entries 1–4)
to excellent for benzyl bromides (entries 6–10). It can be noted that
the nature of functionalities might be of minor importance for
the efficiency of reactions since the three-component coupling
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ed using Zn dust and CoBr2 as a catalyst. The following three-component coupling is
is activated in situ using Zn dust only and the reaction is conducted at ambient
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performs as well with phenyl bearing both electron-withdrawing
and electron-donating groups. The position of the substituent does
not influence the course of the reaction and it has to be noted that
even hindered benzyl bromides can undergo the coupling (entry
10). Furthermore, the possibility to operate with p-anisidine as
the amine provides a potential instant access to phenylalanine
derivatives by oxidative deprotection of the PMP group (entry 7).12

However, the procedure presents some limitations. A major
drawback concerns the absence of coupling between primary
amines, glyoxylate and aromatic organozinc reagents (entry 5).
This is likely due to the formation of an imine, which is not reactive
towards arylzinc reagents. This limited reactivity of non-activated
imines towards nucleophiles is a well-known issue. Another limi-
tation is the impossibility to realize three-component couplings
involving aryl bromides under Barbier-like conditions. Indeed, a
bis-amino ester resulting from the C-C reductive coupling of the
formal iminium ion under such reductive conditions (presence of
Zn dust) is the major product of the reaction (Scheme 2).

In conclusion, this work demonstrates that preformed or in situ-
generated organozinc reagents can be very convenient nucleo-
philes in three-component couplings with ethyl glyoxylate and
amines. To the best of our knowledge, this constitutes the first
example of the use of organozinc reagents in such a multicompo-
nent procedure leading to a-amino acid derivatives. The develop-
ment of an enantioselective version of the reaction is ongoing
and will be reported in due course.
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